
Documentation automation for the Verification and
Validation of Rubin Observatory Software

Gabriele Comorettoa, Leanne P. Guya, William O’Mullanea, Keith Bechtolb, Jeffrey L. Carlina,
Brian Van Klavererc, and Austin Robertsa

aAURA/Rubin Observatory, 950 N. Cherry Ave., Tucson, AZ 85719, USA
bDepartment of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA

cSLAC National Accelerator Laboratory, Menlo Park, CA, USA

March 12, 2020

ABSTRACT
The Data Management (DM) subsystem of the Vera C. Rubin Observatory Legacy Survey of Space and Time
(LSST) is responsible for creating the software, services, and systems that will be used to produce science-
ready data products. The software, currently under development is heterogeneous, comprising both C++ and
Python components, and is designed to facilitate both the processing of the observatory images and to enable
value-added contributions from the broader scientific community. Verification and validation of these software
products, services, and systems is an essential yet time-consuming task.

In this paper, we present the tooling and procedures used in the preparation of documentation, for a systematic
verification and validation documentation approach.

By adopting a systematic approach, we guarantee full traceability to system requirements, integration with
the project’s System Engineering model, and substantially reduce the time required for the whole process.

1. INTRODUCTION
The Rubin Observatory Data Management System (DM), as described in1 , is responsible for creating the
software, services, and systems that will be used to produce the observatory’s science-ready data products.
The software, currently under development, is heterogeneous, comprising both C++ and Python components,
and is designed to facilitate both the processing of LSST images and to enable value-added contributions from
the broader scientific community. Project requirements on DM products are documented in change-controlled
specifications. DM Verification and Validation activities are planned to guarantee that survey software and
infrastructure both fulfill the system requirements and enable the science that motivates the project.

In line with the verification approach adopted for the Gaia DPAC project, described in in2 , we present
here the tooling and procedures used at Rubin Observatory for the documentation of verification and validation
activities. Test activities are managed in Jira, where test cases are created and updated, and test results are
reported. This ensures that all elements to be documented are available in one tool, that maintains a history of the
process. The System Engineering model is synced with the Jira test framework, providing a direct link between
tests and requirements. Test documents can therefore be generated programmatically, avoiding typical problems
such as a lack of traceability, misspelling, duplication of content, and misalignment between documents. The
centralized collection of information permits a high level of automation, where the extraction of test documents is
achieved by a continuous integration process. This systematic approach substantially reduces the time required
to produce verification and validation documentation, and its integration with the project’s System Engineering
model, see3 , ensures full traceability to system requirements.



2. THE DOCUMENTATION PROCESS
In the scope of Verification and Validation, documents are written using LATEXand considered as source code.
Each document has a Git repository, where each edit is driven by a Jira issue, implemented in a ticket branch,
reviewed by a third person before merging to master.

Using the GitHub Pull Request, it is easy to drive formal reviews, keeping the right contributors informed,
and ensuring that changes are agreed.

Docsteady has been developed in-house by LSST DM to address this problem. Expand on this and explain
why we developed this.

3. THE VERIFICATION AND VALIDATION
The verification and validation approach as illustrated in3 , has been implemented. Required tools have been
put in place, like Syndeia and Docsteady.

3.1 Tools
Follows the description of the tools we are using, of the procedure followed and the automatic generation of the
test documents.

GitHub : It host the document content, and consider it as source code. It also provides metadata, like date,
revision numbers and tags.

Travis : It is the continuous integration tool integrated with GitHub. In the case of documents, Travis is
configured in such a way that, when a change in the repository happens, it triggers the build of the pdf and
publish it to the corresponding lsst.io page.

lsst.io : Each document has a lsst.io publication page, where the pdf is pushed by Travis, after each successful
build. This makes very easy to share the documents in different version, like for example tags or branches.

Docushare : It is the official Rubin Observatory documentation repository during construction. Documents
are uploaded in Docushare only after their formal approval.

Jira : The Rubin Observatory issue tracking system. The Adaptavist Test Manager plugin (ATM) provides
additional functionalities to Jira to manage test activities.

DocSteady : It is the tool that permits the generation of the test documents, extracting the information from
Jira using REST API.

MagicDraw : It is the Rubin Observatory Modeling tool. It is used for requirement management. Verification
Elements are created in MagicDraw and then synchronized to and from Jira.

Syndeia It is the tool that permits the integration between MagicDraw and Jira. The Verification Elements,
first created in MagicDraw, are synched in Jira. After the test activity is completed, the information will be
synched back to MagicDraw.



3.2 Procedures
The Verification and Validation activities originate from the requirements. We assume in this document, that
the requirements have been properly formalized, documented and approved.

For each requirement in MagicDraw, one or more verification elements are created. When first created, the
verification elements have no description. The only information they have is the requirement from where they
have been generated.

They are synched to Jira using Syndeia, where they can be assigned to a responsible and completed with the
relevant information.

[add picture?]

3.2.1 Test Procedures Preparation
After the verification elements have been created and propagated to Jira, they are assigned depending on the
team or component they belong to. The assignee has the task to provide the right scope of the verification
element and create the corresponding test cases. The verification elements are addressing all the aspects of a
requirement, that need to be verified. Verification Elements are organized per component, like for example DM,
and sub-component, like for example Network.

The test case associated with a verification element are assigned to an owner, that will complete it giving
description, scope and, test procedure and other relevant information depending on the cases.

Verification elements and test cases are baselined in corresponding documents, in order to guarantee trace-
ability and correctness of them.

3.2.2 Planning and Execution
Test campaigns are scheduled following defined milestones at project level, that are outside the scope of this
document. Extra test campaigns may be scheduled on a per need base.

For each test campaign, two Jira ATM objects have to be created at least:

• Jira ATM Test Plan that provides the context of the test activity, and usually corresponds to a milestone.

• Jira AATM Test Cycle(s) that provides the scope. For each test campaign we may have multiple test
cycles, depending on the different configurations, datasets, or extra conditions we may want to test. The
Test Cycles are traced to the Test Plan, and provides the list of test cases that need to be executed.

We can identify two phase:

Planning : It is the phase when the test campaign is prepared. All relevant information shall be collected
in the Jira ATM Test Plan and Test Cycle(s). At the end of this phase we shall be able to say: the test is
ready to start. Despite in the Rubin Observatory there are no formal Test Readiness Review for each test
campaign, the tooling and procedures in place permit to who is reposnsible of the test activity and relevant
stakeholders, to assess and review the collected information. This is done extracting the information into a
document, the Test Plan, in GitHub, generating the pdf and making it available in the corresponding lsst.io
landing page. Contributors, reviewers and stakeholders can access easily the produced pdf, check the content of
the test plan and comment, ask for clarification, or changes, using the GitHub Pull Request (PR) mechanism
or the corresponding Jira issue. When agreement on the test plan content has been reached, the ATM test plan
status is changed to approved. The test activity is ready to start.

The outcome of this first phase is an approved test plan to be uploaded in Docushare. The document at this
stage provides the agreed test procedures and all the necessary information required to execute the tests. The
Github repository will be tagged with the corresponding issue number v1.0.



Execution : In this phase, the testers identified in the the test plan are in charge to execute the test procedures
and document the result of each steps in Jira ATM. The ATM plugin provide a test player view, where for each
step in each test case, it is possible to say, it it has been executed successfully or not. Also it possible to related
to the test execution any Jira issue documenting problems raised during the execution.

All this information is extracted in a report document. In order to avoid the proliferation of documents, the
report information is added to the Test Plan created in the previous fare. The document is therefore renamed
as Test Plan and Report.

Once the test execution is completed, an overall assessment shall be provided in the ATM Test Plan.
The document generation will provide a readable version of the document including all test information.

Stakeholder are able to to review the outcome of the test campaign using the same PR mechanism reported
above, commenting, asking for more information or changes if required, and finally, when consensus is reached,
approve the test campaign result.

At the end of the test campaign, the Test Plan and Report is issued and uploaded to Docushare. The Github
repository is tagged with the new issue number, v2.0.

3.3 Test Documents
Based on the process just outlined above, the following documents are identified.

These documents are generated using the Docsteady. The generation can be done manually, or automat-
ically. Authomation is particularly useful in case we want to see every day the progress of the previous day
published in the lsst.io landing page.

The extraction tool, Docsteady, permits to the user to concentrate only on the test activities, forgetting any
documentation aspect.

3.3.1 Test Specification
The Test Specification is a document that baseline the test cases defined on a specific component.

3.3.2 Test Plan and Report
The Test Plan and Report include all planning and execution information. The document is issued in two times.
The first issue corresponds to the consolidation of the planning activity, the second to the finalized test campaign.

3.3.3 Verification Elements Baseline
This document provides a snapshot of the verification elements, which content is maintained in Jira issues,
therefore it is very easy to change. Having a snapshot of the verification elements in a document, make it
possible to assess them, approve and keep history. Approved versions are uploaded in Docushare and used as a
reference in other test documents.

4. INFORMATION SUMMARY AND THE VERIFICATION CONTROL
DOCUMENT

As it has been described in the above section, all Rubin Observatory test information is managed in Jira. This
permits to extract very easily the Verification Control Document (VCD), that shows the level of coverage for
each requirement.

The VCD is a latex document generated using the document generation tool Docsteady. It is managed in
the same way as the Test Plan and Report, the latex code is managed in Github, built in Travis and published
in lsst.io.

Since the number of requirement for the Rubin Observatory is very high, the VCD is generated per subsystem.
The VCD provides 2 main sections:

• Summary Information where a status overview is given. This includes the number of requirements and
verification elements related to passed or failed test cases.



• Detailed Information where for each requirement it is shown which are the verification elements and
test cases and the status of the test cases. Links to the test documents are provided, but not descriptive
information.

The VCD become an important document for management to know the level of verification and validation
that has been achieved so far. At the same time it can be provided to reviews in order to demonstrate that the
expected milestones have been met.

5. CONCLUSIONS AND OUTLOOK
APPENDIX A. REFERENCES

REFERENCES
[1] Jurić, M., Kantor, J., Lim, K. T., Lupton, R. H., Dubois-Felsmann, G., Jenness, T., Axelrod, T. S., Aleksić,

J., Allsman, R. A., AlSayyad, Y., Alt, J., Armstrong, R., Basney, J., Becker, A. C., Becla, J., Biswas, R.,
Bosch, J., Boutigny, D., Kind, M. C., Ciardi, D. R., Connolly, A. J., Daniel, S. F., Daues, G. E., Economou,
F., Chiang, H. F., Fausti, A., Fisher-Levine, M., Freemon, D. M., Gris, P., Hernandez, F., Hoblitt, J., Ivezić,
Z., Jammes, F., Jevremović, D., Jones, R. L., Kalmbach, J. B., Kasliwal, V. P., Krughoff, K. S., Lurie, J.,
Lust, N. B., MacArthur, L. A., Melchior, P., Moeyens, J., Nidever, D. L., Owen, R., Parejko, J. K., Peterson,
J. M., Petravick, D., Pietrowicz, S. R., Price, P. A., Reiss, D. J., Shaw, R. A., Sick, J., Slater, C. T., Strauss,
M. A., Sullivan, I. S., Swinbank, J. D., Van Dyk, S., Vujčić, V., Withers, A., and Yoachim, P., “The LSST
Data Management System,” in [Astronomical Data Analysis Software and Systems XXV ], Lorente, N. P. F.,
Shortridge, K., and Wayth, R., eds., ASP Conf. Ser. 512, 279 (Dec 2017).

[2] Comoretto, G., Gallegos, J., Els, S., Gracia, G., Lock, T., Mercier, E., and O’Mullane, W., “The Informa-
tion Management Tool (IMT) of Gaia DPAC and its potential as tool for large scale software development
projects,” in [Modeling, Systems Engineering, and Project Management for Astronomy V ], Angeli, G. Z. and
Dierickx, P., eds., 8449, 186 – 195, International Society for Optics and Photonics, SPIE (2012).

[3] Selvy, B. M., Roberts, A., Reuter, M., Claver, C. C., Comoretto, G., Jenness, T., O’Mullane, W., Serio, A.,
Bovill, R., Sebag, J., Thomas, S., Bajaj, M., Zwemer, D., and Klaveren, B. V., “V&V planning and execution
in an integrated model-based engineering environment using MagicDraw, Syndeia, and Jira,” in [Modeling,
Systems Engineering, and Project Management for Astronomy VIII ], Angeli, G. Z. and Dierickx, P., eds.,
10705, 306 – 318, International Society for Optics and Photonics, SPIE (2018).

APPENDIX B. ACRONYMS

Acronym Description
API Application Programming Interface
ATM Adaptavist Test Management
AURA Association of Universities for Research in Astronomy
DM Data Management
DPAC Data Processing and Analysis Consortium (Gaia)
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Telescope)
LaTeX (Leslie) Lamport TeX (document markup language and document preparation system)
PR Pull Request
SLAC SLAC National Accelerator Laboratory (formerly Stanford Linear Accelerator Center;

SLAC is now no longer an acronym)
VCD Verification Control Document


	Introduction
	The Documentation Process
	The Verification and Validation
	Tools
	Procedures
	Test Procedures Preparation
	Planning and Execution

	Test Documents
	Test Specification
	Test Plan and Report
	Verification Elements Baseline


	Information Summary and the Verification Control Document
	Conclusions and Outlook
	References
	Acronyms

