S\

+ o _— °©
* 4 How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

VERA C.RUBIN
OBSERVATORY

How To Execute docsteady
G. Comoretto
2021-01-20

1 Introduction

This is intended to be a short guide to help the installation and execution of docsteady.

2 Installation

Create a conda environment based on the docsteady conda package:

conda create --name docsteady-env docsteady -c gcomoretto

Ensure that the conda configuration file . condarc does not include the conda-forge channel.
To use docsteady, activate the environment as follows:

conda activate docsteady-env

This environment will provide all dependencies that are required to run docsteady.

It is recommended to use the provided conda environment also for development activities,
see section @

Future releases of docsteady should be provided in the conda-forge channel instead of a pri-
vate channel. The anaconda 1sst-dm channel could however be a more flexible alternative.

3 Execution

It is recommended to provide the credentials seting up the following environment variables:

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

* export JIRA_USER=<jira-username>

* export JIRA_PASSWORD=<password>

otherwise, it is required to specify them from the command line using the --username and
--password options. In case credential options are omitted and no environment variables are
defined, username and password will be prompted interactively.

Personal Jira credentials can be used. For Cl purposes, a general set of credentials are avail-
able, as specified in section .

In order to execute any of the docsteady commands described in the following subsections,
a conda environment providing docsteady shall be activated, as described in section .

Use --help to get the list of available options for each of the docsteady commands. In addition,

existing documents generated using docsteady, have a .docugen file with the command to be
executed in Cl, which can be used as an example.

3.1 Test Specification Generation

Test specifications are extracted using REST API. All tests cases included in a TM4J folder, in-
cluding subfolders, are rendered in the same extraction. The folder organization in Jira should
correspond to the major subsystem components, and modeled in MagicDraw.

The syntax to extract a test specification is the following:

docsteady generate-spec "</tm4j_folder>" jira_docugen.tex

where </tm4j_folder> shall be replaced by the exact folder where the test cases are defined
in the Jira Test Cases tab. For example, the command to extract the DM Acceptance test
specification, LDM-639, is the following:

docsteady generate-spec "/Data Management/Acceptance|LDM-639" [jira_docugen.tex]

Note that:

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

* the output file jira_docugen.tex is optional in the execution of docsteady, but required in
this context in order to include the extracted information in a BTgX document (i.e. LDM-
639.tex). If omitted, the docsteady output will just be printed in the terminal;

+ the folder name in Jira includes at the end the test specification document handler. This
is a best practice to use when organizing test cases in Jira, it helps to orientate in the
folder structure;

+ an appendix with the traceability to the requirements is produced in the file jira_docugen.appendix.tex,
to be included in the test specification tex file.

See LDM-639 Git repository as an example.

3.2 Test Plan and Report Generation

Important: before extracting a test plan and report using docsteady, the corresponding doc-
ument handler has to be added in the Document IDfield in the Jira test plan object. This ensures
that the Verification Control Document will include this information.

The following command extracts a Test Plan and Report using Jira REST API:
docsteady generate-tpr <LVV-PXX> <file.tex> [--trace truel

Where:

* LVV-PXX is the TM4J object that describes the test campaign, for example LVV-P72;

+ file.tex is the Test Plan and Report tex file where the document will be rendered, for
example DMTR-231. tex;

« —-trace true (optional) generates an appendix with the traceability information.

Each TM4]J test plan and related information in Jira is rendered in a different Test Plan and
Report document, which filename usually corresponds also to the document handler in Do-
cushare.

S\

+ o _— °©
* 4 How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

VERA C.RUBIN
OBSERVATORY

The generated file can be built directly into the corresponding pdf, however additional files
are required.

+ Makefile
+ appendix.tex

* history_and_info.tex

When creating the Git repository using sqrbot-jr, all the required files should already be
present. See SQR-006 for more information regarding sqrbot-jr.

In case you want to generate a Test Plan and Report for a different subsystem, not DM, you
can use the namespace global option:

docsteady --namespace <NS> generate-tpr <LVV-PXX> <file.tex> [--trace true]
Valid namespaces are:
+ SE: system Enginering

+ DM: Data Management

+ TS: Telescope & Site

See SCTR-14 or DMTR-231 Git repositories as an example.

3.3 Verification Element Baseline Generation

Verification Elements (VE) are Jira issues in the LVV Jira project, of type Verification. They are
categorized in Components (DM, SITCOM, etc) and Sub-Components.

A VE baseline document is extracted using REST API. All VE associated with a Jira Component
or Sub-Component, if specified, are rendered in the same extraction.

The syntax to extract a VE baseline information is the following:

https://sqr-006.lsst.io/

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

docsteady [--namespace <CMP>] baseline-ve [--subcomponent <SUBC>] jira_docugen.tex [--

details true]

The information is saved in the specified jira_docugen. tex file. This file has to be included in a
KX document, where the corresponding context about the Component and Sub-Component
is provided.

The --namespace <CMP> option identifies the Jira component from which to extract the informa-
tion. The parameter CMP shall correspond to the Rubin Observatory sub-systems. See the See
subsection @ for the complete list of components. If omitted, the DM component is selected
by default.

The --subcomponent <SUBC> is optional. If omitted all verification elements of the specified
component will be extracted. See for the description of the DM subcomponents.

If the option --details true is provided, an extra technical note is generated, including all test
case details.

See LDM-732 Git repository as an example.

3.3.1 Sub-Components

Ideally, Sub-Components are matched to the major products of a LSST/Rubin subsystem. They
should also be mapped to the product tree defined in the MagicDraw model.

In DM, trying to find a good balance between details and practice, the following components
have been defined, in agreement with the DM scientist leader:

» Science
* Service

* Network

Infrastructure

For each of these subcomponents, a different VE baseline document is extracted.

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

3.4 Verification Control Document Generation

The extraction of the Verification Control Document is done using direct access to the Jira
database and not using REST API access, like for all other test documents described above.

Since the access to the Jira database is possible only from the Tucson network, itis required to
be connected via VPN. A direct access to the Jira database implies also that the username and
password to use are different since credentials to access the Jira web interface or the REST
API are not enabled to access the database. They are two different authentication systems.
Therefore personal Jira credentials will not work with this docsteady command.

A special read-only user has been enabled in the Jira database, jiraro. Section explains
where to find the full credentials details.

For your convenience, the credentials can be specified in the following environment variables:

* export JIRA_VCD_USER=jiraro
« export JIRA_VCD_PASSWORD (see section b.1))

* export JIRA_DB=140.252.201.12

otherwise, it is required to specify them from the command line using the options --vcduser,
--vcdpwd, and --jiradb. In case credential options are omitted and no environment variables
are defined, they will be prompted interactively. Note also that the Jira database IP address
may change. Updated information are maintained in the vault specified in section .

The following command extractsall VCD information regarding DM and generates the file

jira_docugen. tex:
docsteady [--namespace <COM>] generate-vcd --sql True jira_docugen. tex

When no --namespace if provided, the DM component is selected by default. The generated
file jira_docugen.tex is meant to be included in LDM-692.tex.

In case you want to generate the VCD for a different LSST/Rubin Observatory subsystem VCD,

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

just use the corresponding subsystem code configured in the Jira component field. See next
subsection @ for the complete list.

3.5 Components - Sub-systems

Follows the list of components configured for the Jira LVV project. Each component corre-
sponds to a Rubin Observatory Construction subsystem.

* CAM: Camera

DM: Data Management, the default component for all docsteady commands.

EPO: Education and Public Outreach

OCS: Observatory Control System

PSE: Project System Engineering, used for Commisioning (SitCom)

T&S: Telescope and Site

In case the subcomponent specified is "None”, all VE without subcomponent will be extracted.

4 Development

Despite docsteady is a pure python tool, it depends on pandoc, that is a c++ compiled library
available only as conda package. It has been observed also, that any small change in the
version of pandoc may lead to unexpected changes in the resulting BTgX format.

Therefore, in order to ensure the expected pandoc behavior, it is important to set-up the
conda environment corresponding to the latest docsteady working version. The environment
set-up is explained in section .

The docsteady source code of available at https://github.com/1sst-dm/docsteady.

To test changes done locally in the source code, use the following procedure:

https://github.com/lsst-dm/docsteady

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

(if not available) create the environment as specified in section

+ activate the environment: conda activate docsteady-env

+ clone docsteady repository and checkout a ticket branch

+ do your changes

* install the updates in the docsteady-env environment: python setup.py install

* activate the same docsteady-env environment in a different terminal to test the new
changed

+ once the changes are OK, commit them in the repository and open a PR for merging the
branch to master

5 Documentation Procedure

The autogeneration of documents may become very confusing if not done in a programmatic
way. Please consider the DM documentation approach as a guideline, summarized here.

* Create a document handler in DocuShare

+ Use the document handler to create a repository in Github, using sqrbot-jr that will also
create the corresponding landing page in Isst.io

+ Configure the continuous integrations described in next section E

* Render the document to a ticket branch, or to the jira-sync special branch. Never auto-
generate the document directly to master

+ Ensure that the document is correctly published in the corresponding LSST The Docs
landing page and that everybody who is interested can access it.

* Create a GitHub Pull Request to let contributors and stakeholders comment on the
changes.

* When a set of activities are completed, and all comments have been addressed, merge
the branch/PR to master.

+.% ~
VERA C.RUBIN
OBSERVATORY

How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

* In case the special jira-sync branch is used, after merging it to master, delete it and
recreate from the latest master. Documentation tags corresponding to official issues of
the document in Docushare can also be done in the jira-sync special branch.

6 Continuous Integration

The real added-value of this approach, is the capability to auto-generate continuously the
documents from Jira. This is done using the Jenkins service available at:

https://lsst-docs-ci.ncsa.illinois.edu/jenkins/
This service is at the moment behind the NCSA firewall, and therefore it requires a VPN to
access and monitor the jobs. Authentication to this Jenkins instance is managed via OATH.

See next sub-section .

The rendered documents will be available in the corresponding GitHub repositories and LSST
The Docs landing pages.

The docugen jobs are created using the seeds script defined at the following location:
https://github.com/docs-ci/docs-ci-seeds/blob/master/jobs/docugen_jobs.groovy

There should be no need to change this script, unless problems are found in its logic, or im-
provements need to be implemented The jobs are configured in the following YAML file:

https://github.com/docs-ci/docs-ci-seeds/blob/master/etc/docugen.yaml
The seeds job in Jenkins:
https://1lsst-docs-ci.ncsa.illinois.edu/jenkins/job/Service/job/seeding/

will detect the changes in the YAML configuration file and create/update the the correspond-
ing Jenkins docugen jobs.

https://lsst-docs-ci.ncsa.illinois.edu/jenkins/
https://github.com/docs-ci/docs-ci-seeds/blob/master/jobs/docugen_jobs.groovy
https://github.com/docs-ci/docs-ci-seeds/blob/master/etc/docugen.yaml
https://lsst-docs-ci.ncsa.illinois.edu/jenkins/job/Service/job/seeding/

S\

+ o _— °©
* 4 How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

VERA C.RUBIN
OBSERVATORY

6.1 Authentication

The access to https://1sst-docs-ci.ncsa.illinois.edu/jenkins is granted adding users to
the docs-ci GitHub organization, managed by DM Architecture team.

Two generic set of credentials to access Jira REST APl and the Jira database have been defined.
These credentials are available at 1password. com, in the LSST-IT architecture vault, but not yet
integrated into docsteady. In order to use these credentials, they have to be configured using
environmentvariables, added as options from the command line, or entered when prompted,
as specified in this technical note.

10

https://lsst-docs-ci.ncsa.illinois.edu/jenkins

. /_ \%
+o . .
* 4 How To Execute docsteady | set the Reference with \setDocRef | Latest Revision 2021-01-20

VERA C.RUBIN
OBSERVATORY

A Acronyms

Acronym Description

API Application Programming Interface

CAM CAMera

Cl Continuous Integration

DM Data Management

DMSR DM System Requirements; LSE-61

DMTR DM Test Report

EPO Education and Public Outreach

HTML HyperText Markup Language

IT Information Technology

LDM LSST Data Management (Document Handle)

LSE LSST Systems Engineering (Document Handle)

LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-
scope)

LSSTC LSST Corporation

LwVv LSST Verification and Validation (Jira Project)

LaTeX (Leslie) Lamport TeX (document markup language and document prepara-
tion system)

NCSA National Center for Supercomputing Applications

OAUTH Open Authorization

OCS Observatory Control System

PR Pull Request

PSE Project System Engineering

REST REpresentational State Transfer

SCTR SITCOM Test Report

SITCOM System Engineering and Commissioning

T&S Telescope and Site

TM4J Test Manager for Jira (formerly ATM, Adaptivist Test Manager)

TS Test Specification

VCD Verification Control Document

VE Verification Element

VPN virtual private network

11

	Introduction
	Installation
	Execution
	Test Specification Generation
	Test Plan and Report Generation
	Verification Element Baseline Generation
	Sub-Components

	Verification Control Document Generation
	Components - Sub-systems

	Development
	Documentation Procedure
	Continuous Integration
	Authentication

	Acronyms

